1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#![deny(missing_docs)]
#![allow(non_snake_case)]

extern crate alloc;

use alloc::vec;
use alloc::vec::Vec;
use clear_on_drop::clear::Clear;
use curve25519_dalek::scalar::Scalar;
use inner_product_proof::inner_product;

/// Represents a degree-1 vector polynomial \\(\mathbf{a} + \mathbf{b} \cdot x\\).
pub struct VecPoly1(pub Vec<Scalar>, pub Vec<Scalar>);

/// Represents a degree-3 vector polynomial
/// \\(\mathbf{a} + \mathbf{b} \cdot x + \mathbf{c} \cdot x^2 + \mathbf{d} \cdot x^3 \\).
#[cfg(feature = "yoloproofs")]
pub struct VecPoly3(
    pub Vec<Scalar>,
    pub Vec<Scalar>,
    pub Vec<Scalar>,
    pub Vec<Scalar>,
);

/// Represents a degree-2 scalar polynomial \\(a + b \cdot x + c \cdot x^2\\)
pub struct Poly2(pub Scalar, pub Scalar, pub Scalar);

/// Represents a degree-6 scalar polynomial, without the zeroth degree
/// \\(a \cdot x + b \cdot x^2 + c \cdot x^3 + d \cdot x^4 + e \cdot x^5 + f \cdot x^6\\)
#[cfg(feature = "yoloproofs")]
pub struct Poly6 {
    pub t1: Scalar,
    pub t2: Scalar,
    pub t3: Scalar,
    pub t4: Scalar,
    pub t5: Scalar,
    pub t6: Scalar,
}

/// Provides an iterator over the powers of a `Scalar`.
///
/// This struct is created by the `exp_iter` function.
pub struct ScalarExp {
    x: Scalar,
    next_exp_x: Scalar,
}

impl Iterator for ScalarExp {
    type Item = Scalar;

    fn next(&mut self) -> Option<Scalar> {
        let exp_x = self.next_exp_x;
        self.next_exp_x *= self.x;
        Some(exp_x)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (usize::max_value(), None)
    }
}

/// Return an iterator of the powers of `x`.
pub fn exp_iter(x: Scalar) -> ScalarExp {
    let next_exp_x = Scalar::one();
    ScalarExp { x, next_exp_x }
}

pub fn add_vec(a: &[Scalar], b: &[Scalar]) -> Vec<Scalar> {
    if a.len() != b.len() {
        // throw some error
        //println!("lengths of vectors don't match for vector addition");
    }
    let mut out = vec![Scalar::zero(); b.len()];
    for i in 0..a.len() {
        out[i] = a[i] + b[i];
    }
    out
}

impl VecPoly1 {
    pub fn zero(n: usize) -> Self {
        VecPoly1(vec![Scalar::zero(); n], vec![Scalar::zero(); n])
    }

    pub fn inner_product(&self, rhs: &VecPoly1) -> Poly2 {
        // Uses Karatsuba's method
        let l = self;
        let r = rhs;

        let t0 = inner_product(&l.0, &r.0);
        let t2 = inner_product(&l.1, &r.1);

        let l0_plus_l1 = add_vec(&l.0, &l.1);
        let r0_plus_r1 = add_vec(&r.0, &r.1);

        let t1 = inner_product(&l0_plus_l1, &r0_plus_r1) - t0 - t2;

        Poly2(t0, t1, t2)
    }

    pub fn eval(&self, x: Scalar) -> Vec<Scalar> {
        let n = self.0.len();
        let mut out = vec![Scalar::zero(); n];
        for i in 0..n {
            out[i] = self.0[i] + self.1[i] * x;
        }
        out
    }
}

#[cfg(feature = "yoloproofs")]
impl VecPoly3 {
    pub fn zero(n: usize) -> Self {
        VecPoly3(
            vec![Scalar::zero(); n],
            vec![Scalar::zero(); n],
            vec![Scalar::zero(); n],
            vec![Scalar::zero(); n],
        )
    }

    /// Compute an inner product of `lhs`, `rhs` which have the property that:
    /// - `lhs.0` is zero;
    /// - `rhs.2` is zero;
    /// This is the case in the constraint system proof.
    pub fn special_inner_product(lhs: &Self, rhs: &Self) -> Poly6 {
        // TODO: make checks that l_poly.0 and r_poly.2 are zero.

        let t1 = inner_product(&lhs.1, &rhs.0);
        let t2 = inner_product(&lhs.1, &rhs.1) + inner_product(&lhs.2, &rhs.0);
        let t3 = inner_product(&lhs.2, &rhs.1) + inner_product(&lhs.3, &rhs.0);
        let t4 = inner_product(&lhs.1, &rhs.3) + inner_product(&lhs.3, &rhs.1);
        let t5 = inner_product(&lhs.2, &rhs.3);
        let t6 = inner_product(&lhs.3, &rhs.3);

        Poly6 {
            t1,
            t2,
            t3,
            t4,
            t5,
            t6,
        }
    }

    pub fn eval(&self, x: Scalar) -> Vec<Scalar> {
        let n = self.0.len();
        let mut out = vec![Scalar::zero(); n];
        for i in 0..n {
            out[i] = self.0[i] + x * (self.1[i] + x * (self.2[i] + x * self.3[i]));
        }
        out
    }
}

impl Poly2 {
    pub fn eval(&self, x: Scalar) -> Scalar {
        self.0 + x * (self.1 + x * self.2)
    }
}

#[cfg(feature = "yoloproofs")]
impl Poly6 {
    pub fn eval(&self, x: Scalar) -> Scalar {
        x * (self.t1 + x * (self.t2 + x * (self.t3 + x * (self.t4 + x * (self.t5 + x * self.t6)))))
    }
}

impl Drop for VecPoly1 {
    fn drop(&mut self) {
        for e in self.0.iter_mut() {
            e.clear();
        }
        for e in self.1.iter_mut() {
            e.clear();
        }
    }
}

impl Drop for Poly2 {
    fn drop(&mut self) {
        self.0.clear();
        self.1.clear();
        self.2.clear();
    }
}

#[cfg(feature = "yoloproofs")]
impl Drop for VecPoly3 {
    fn drop(&mut self) {
        for e in self.0.iter_mut() {
            e.clear();
        }
        for e in self.1.iter_mut() {
            e.clear();
        }
        for e in self.2.iter_mut() {
            e.clear();
        }
        for e in self.3.iter_mut() {
            e.clear();
        }
    }
}

#[cfg(feature = "yoloproofs")]
impl Drop for Poly6 {
    fn drop(&mut self) {
        self.t1.clear();
        self.t2.clear();
        self.t3.clear();
        self.t4.clear();
        self.t5.clear();
        self.t6.clear();
    }
}

/// Raises `x` to the power `n` using binary exponentiation,
/// with (1 to 2)*lg(n) scalar multiplications.
/// TODO: a consttime version of this would be awfully similar to a Montgomery ladder.
pub fn scalar_exp_vartime(x: &Scalar, mut n: u64) -> Scalar {
    let mut result = Scalar::one();
    let mut aux = *x; // x, x^2, x^4, x^8, ...
    while n > 0 {
        let bit = n & 1;
        if bit == 1 {
            result = result * aux;
        }
        n = n >> 1;
        aux = aux * aux; // FIXME: one unnecessary mult at the last step here!
    }
    result
}

/// Takes the sum of all the powers of `x`, up to `n`
/// If `n` is a power of 2, it uses the efficient algorithm with `2*lg n` multiplications and additions.
/// If `n` is not a power of 2, it uses the slow algorithm with `n` multiplications and additions.
/// In the Bulletproofs case, all calls to `sum_of_powers` should have `n` as a power of 2.
pub fn sum_of_powers(x: &Scalar, n: usize) -> Scalar {
    if !n.is_power_of_two() {
        return sum_of_powers_slow(x, n);
    }
    if n == 0 || n == 1 {
        return Scalar::from(n as u64);
    }
    let mut m = n;
    let mut result = Scalar::one() + x;
    let mut factor = *x;
    while m > 2 {
        factor = factor * factor;
        result = result + factor * result;
        m = m / 2;
    }
    result
}

// takes the sum of all of the powers of x, up to n
fn sum_of_powers_slow(x: &Scalar, n: usize) -> Scalar {
    exp_iter(*x).take(n).sum()
}

/// Given `data` with `len >= 32`, return the first 32 bytes.
pub fn read32(data: &[u8]) -> [u8; 32] {
    let mut buf32 = [0u8; 32];
    buf32[..].copy_from_slice(&data[..32]);
    buf32
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn exp_2_is_powers_of_2() {
        let exp_2: Vec<_> = exp_iter(Scalar::from(2u64)).take(4).collect();

        assert_eq!(exp_2[0], Scalar::from(1u64));
        assert_eq!(exp_2[1], Scalar::from(2u64));
        assert_eq!(exp_2[2], Scalar::from(4u64));
        assert_eq!(exp_2[3], Scalar::from(8u64));
    }

    #[test]
    fn test_inner_product() {
        let a = vec![
            Scalar::from(1u64),
            Scalar::from(2u64),
            Scalar::from(3u64),
            Scalar::from(4u64),
        ];
        let b = vec![
            Scalar::from(2u64),
            Scalar::from(3u64),
            Scalar::from(4u64),
            Scalar::from(5u64),
        ];
        assert_eq!(Scalar::from(40u64), inner_product(&a, &b));
    }

    /// Raises `x` to the power `n`.
    fn scalar_exp_vartime_slow(x: &Scalar, n: u64) -> Scalar {
        let mut result = Scalar::one();
        for _ in 0..n {
            result = result * x;
        }
        result
    }

    #[test]
    fn test_scalar_exp() {
        let x = Scalar::from_bits(
            *b"\x84\xfc\xbcOx\x12\xa0\x06\xd7\x91\xd9z:'\xdd\x1e!CE\xf7\xb1\xb9Vz\x810sD\x96\x85\xb5\x07",
        );
        assert_eq!(scalar_exp_vartime(&x, 0), Scalar::one());
        assert_eq!(scalar_exp_vartime(&x, 1), x);
        assert_eq!(scalar_exp_vartime(&x, 2), x * x);
        assert_eq!(scalar_exp_vartime(&x, 3), x * x * x);
        assert_eq!(scalar_exp_vartime(&x, 4), x * x * x * x);
        assert_eq!(scalar_exp_vartime(&x, 5), x * x * x * x * x);
        assert_eq!(scalar_exp_vartime(&x, 64), scalar_exp_vartime_slow(&x, 64));
        assert_eq!(
            scalar_exp_vartime(&x, 0b11001010),
            scalar_exp_vartime_slow(&x, 0b11001010)
        );
    }

    #[test]
    fn test_sum_of_powers() {
        let x = Scalar::from(10u64);
        assert_eq!(sum_of_powers_slow(&x, 0), sum_of_powers(&x, 0));
        assert_eq!(sum_of_powers_slow(&x, 1), sum_of_powers(&x, 1));
        assert_eq!(sum_of_powers_slow(&x, 2), sum_of_powers(&x, 2));
        assert_eq!(sum_of_powers_slow(&x, 4), sum_of_powers(&x, 4));
        assert_eq!(sum_of_powers_slow(&x, 8), sum_of_powers(&x, 8));
        assert_eq!(sum_of_powers_slow(&x, 16), sum_of_powers(&x, 16));
        assert_eq!(sum_of_powers_slow(&x, 32), sum_of_powers(&x, 32));
        assert_eq!(sum_of_powers_slow(&x, 64), sum_of_powers(&x, 64));
    }

    #[test]
    fn test_sum_of_powers_slow() {
        let x = Scalar::from(10u64);
        assert_eq!(sum_of_powers_slow(&x, 0), Scalar::zero());
        assert_eq!(sum_of_powers_slow(&x, 1), Scalar::one());
        assert_eq!(sum_of_powers_slow(&x, 2), Scalar::from(11u64));
        assert_eq!(sum_of_powers_slow(&x, 3), Scalar::from(111u64));
        assert_eq!(sum_of_powers_slow(&x, 4), Scalar::from(1111u64));
        assert_eq!(sum_of_powers_slow(&x, 5), Scalar::from(11111u64));
        assert_eq!(sum_of_powers_slow(&x, 6), Scalar::from(111111u64));
    }

    #[test]
    fn vec_of_scalars_clear_on_drop() {
        let mut v = vec![Scalar::from(24u64), Scalar::from(42u64)];

        for e in v.iter_mut() {
            e.clear();
        }

        fn flat_slice<T>(x: &[T]) -> &[u8] {
            use core::mem;
            use core::slice;

            unsafe { slice::from_raw_parts(x.as_ptr() as *const u8, mem::size_of_val(x)) }
        }

        assert_eq!(flat_slice(&v.as_slice()), &[0u8; 64][..]);
        assert_eq!(v[0], Scalar::zero());
        assert_eq!(v[1], Scalar::zero());
    }

    #[test]
    fn tuple_of_scalars_clear_on_drop() {
        let mut v = Poly2(
            Scalar::from(24u64),
            Scalar::from(42u64),
            Scalar::from(255u64),
        );

        v.0.clear();
        v.1.clear();
        v.2.clear();

        fn as_bytes<T>(x: &T) -> &[u8] {
            use core::mem;
            use core::slice;

            unsafe { slice::from_raw_parts(x as *const T as *const u8, mem::size_of_val(x)) }
        }

        assert_eq!(as_bytes(&v), &[0u8; 96][..]);
        assert_eq!(v.0, Scalar::zero());
        assert_eq!(v.1, Scalar::zero());
        assert_eq!(v.2, Scalar::zero());
    }
}