1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
#![allow(non_snake_case)]
#![doc(include = "../docs/inner-product-protocol.md")]

use std::borrow::Borrow;
use std::iter;

use curve25519_dalek::ristretto::{CompressedRistretto, RistrettoPoint};
use curve25519_dalek::scalar::Scalar;
use curve25519_dalek::traits::VartimeMultiscalarMul;
use merlin::Transcript;

use errors::ProofError;
use transcript::TranscriptProtocol;

#[derive(Clone, Debug)]
pub struct InnerProductProof {
    pub(crate) L_vec: Vec<CompressedRistretto>,
    pub(crate) R_vec: Vec<CompressedRistretto>,
    pub(crate) a: Scalar,
    pub(crate) b: Scalar,
}

impl InnerProductProof {
    /// Create an inner-product proof.
    ///
    /// The proof is created with respect to the bases \\(G\\), \\(H'\\),
    /// where \\(H'\_i = H\_i \cdot \texttt{Hprime\\_factors}\_i\\).
    ///
    /// The `verifier` is passed in as a parameter so that the
    /// challenges depend on the *entire* transcript (including parent
    /// protocols).
    ///
    /// The lengths of the vectors must all be the same, and must all be
    /// either 0 or a power of 2.
    pub fn create(
        transcript: &mut Transcript,
        Q: &RistrettoPoint,
        G_factors: &[Scalar],
        H_factors: &[Scalar],
        mut G_vec: Vec<RistrettoPoint>,
        mut H_vec: Vec<RistrettoPoint>,
        mut a_vec: Vec<Scalar>,
        mut b_vec: Vec<Scalar>,
    ) -> InnerProductProof {
        // Create slices G, H, a, b backed by their respective
        // vectors.  This lets us reslice as we compress the lengths
        // of the vectors in the main loop below.
        let mut G = &mut G_vec[..];
        let mut H = &mut H_vec[..];
        let mut a = &mut a_vec[..];
        let mut b = &mut b_vec[..];

        let mut n = G.len();

        // All of the input vectors must have the same length.
        assert_eq!(G.len(), n);
        assert_eq!(H.len(), n);
        assert_eq!(a.len(), n);
        assert_eq!(b.len(), n);
        assert_eq!(G_factors.len(), n);
        assert_eq!(H_factors.len(), n);

        // All of the input vectors must have a length that is a power of two.
        assert!(n.is_power_of_two());

        transcript.innerproduct_domain_sep(n as u64);

        let lg_n = n.next_power_of_two().trailing_zeros() as usize;
        let mut L_vec = Vec::with_capacity(lg_n);
        let mut R_vec = Vec::with_capacity(lg_n);

        // If it's the first iteration, unroll the Hprime = H*y_inv scalar mults
        // into multiscalar muls, for performance.
        if n != 1 {
            n = n / 2;
            let (a_L, a_R) = a.split_at_mut(n);
            let (b_L, b_R) = b.split_at_mut(n);
            let (G_L, G_R) = G.split_at_mut(n);
            let (H_L, H_R) = H.split_at_mut(n);

            let c_L = inner_product(&a_L, &b_R);
            let c_R = inner_product(&a_R, &b_L);

            let L = RistrettoPoint::vartime_multiscalar_mul(
                a_L.iter()
                    .zip(G_factors[n..2 * n].into_iter())
                    .map(|(a_L_i, g)| a_L_i * g)
                    .chain(
                        b_R.iter()
                            .zip(H_factors[0..n].into_iter())
                            .map(|(b_R_i, h)| b_R_i * h),
                    )
                    .chain(iter::once(c_L)),
                G_R.iter().chain(H_L.iter()).chain(iter::once(Q)),
            )
            .compress();

            let R = RistrettoPoint::vartime_multiscalar_mul(
                a_R.iter()
                    .zip(G_factors[0..n].into_iter())
                    .map(|(a_R_i, g)| a_R_i * g)
                    .chain(
                        b_L.iter()
                            .zip(H_factors[n..2 * n].into_iter())
                            .map(|(b_L_i, h)| b_L_i * h),
                    )
                    .chain(iter::once(c_R)),
                G_L.iter().chain(H_R.iter()).chain(iter::once(Q)),
            )
            .compress();

            L_vec.push(L);
            R_vec.push(R);

            transcript.append_point(b"L", &L);
            transcript.append_point(b"R", &R);

            let u = transcript.challenge_scalar(b"u");
            let u_inv = u.invert();

            for i in 0..n {
                a_L[i] = a_L[i] * u + u_inv * a_R[i];
                b_L[i] = b_L[i] * u_inv + u * b_R[i];
                G_L[i] = RistrettoPoint::vartime_multiscalar_mul(
                    &[u_inv * G_factors[i], u * G_factors[n + i]],
                    &[G_L[i], G_R[i]],
                );
                H_L[i] = RistrettoPoint::vartime_multiscalar_mul(
                    &[u * H_factors[i], u_inv * H_factors[n + i]],
                    &[H_L[i], H_R[i]],
                )
            }

            a = a_L;
            b = b_L;
            G = G_L;
            H = H_L;
        }

        while n != 1 {
            n = n / 2;
            let (a_L, a_R) = a.split_at_mut(n);
            let (b_L, b_R) = b.split_at_mut(n);
            let (G_L, G_R) = G.split_at_mut(n);
            let (H_L, H_R) = H.split_at_mut(n);

            let c_L = inner_product(&a_L, &b_R);
            let c_R = inner_product(&a_R, &b_L);

            let L = RistrettoPoint::vartime_multiscalar_mul(
                a_L.iter().chain(b_R.iter()).chain(iter::once(&c_L)),
                G_R.iter().chain(H_L.iter()).chain(iter::once(Q)),
            )
            .compress();

            let R = RistrettoPoint::vartime_multiscalar_mul(
                a_R.iter().chain(b_L.iter()).chain(iter::once(&c_R)),
                G_L.iter().chain(H_R.iter()).chain(iter::once(Q)),
            )
            .compress();

            L_vec.push(L);
            R_vec.push(R);

            transcript.append_point(b"L", &L);
            transcript.append_point(b"R", &R);

            let u = transcript.challenge_scalar(b"u");
            let u_inv = u.invert();

            for i in 0..n {
                a_L[i] = a_L[i] * u + u_inv * a_R[i];
                b_L[i] = b_L[i] * u_inv + u * b_R[i];
                G_L[i] = RistrettoPoint::vartime_multiscalar_mul(&[u_inv, u], &[G_L[i], G_R[i]]);
                H_L[i] = RistrettoPoint::vartime_multiscalar_mul(&[u, u_inv], &[H_L[i], H_R[i]]);
            }

            a = a_L;
            b = b_L;
            G = G_L;
            H = H_L;
        }

        InnerProductProof {
            L_vec: L_vec,
            R_vec: R_vec,
            a: a[0],
            b: b[0],
        }
    }

    /// Computes three vectors of verification scalars \\([u\_{i}^{2}]\\), \\([u\_{i}^{-2}]\\) and \\([s\_{i}]\\) for combined multiscalar multiplication
    /// in a parent protocol. See [inner product protocol notes](index.html#verification-equation) for details.
    /// The verifier must provide the input length \\(n\\) explicitly to avoid unbounded allocation within the inner product proof.
    pub(crate) fn verification_scalars(
        &self,
        n: usize,
        transcript: &mut Transcript,
    ) -> Result<(Vec<Scalar>, Vec<Scalar>, Vec<Scalar>), ProofError> {
        let lg_n = self.L_vec.len();
        if lg_n >= 32 {
            // 4 billion multiplications should be enough for anyone
            // and this check prevents overflow in 1<<lg_n below.
            return Err(ProofError::VerificationError);
        }
        if n != (1 << lg_n) {
            return Err(ProofError::VerificationError);
        }

        transcript.innerproduct_domain_sep(n as u64);

        // 1. Recompute x_k,...,x_1 based on the proof transcript

        let mut challenges = Vec::with_capacity(lg_n);
        for (L, R) in self.L_vec.iter().zip(self.R_vec.iter()) {
            transcript.validate_and_append_point(b"L", L)?;
            transcript.validate_and_append_point(b"R", R)?;
            challenges.push(transcript.challenge_scalar(b"u"));
        }

        // 2. Compute 1/(u_k...u_1) and 1/u_k, ..., 1/u_1

        let mut challenges_inv = challenges.clone();
        let allinv = Scalar::batch_invert(&mut challenges_inv);

        // 3. Compute u_i^2 and (1/u_i)^2

        for i in 0..lg_n {
            // XXX missing square fn upstream
            challenges[i] = challenges[i] * challenges[i];
            challenges_inv[i] = challenges_inv[i] * challenges_inv[i];
        }
        let challenges_sq = challenges;
        let challenges_inv_sq = challenges_inv;

        // 4. Compute s values inductively.

        let mut s = Vec::with_capacity(n);
        s.push(allinv);
        for i in 1..n {
            let lg_i = (32 - 1 - (i as u32).leading_zeros()) as usize;
            let k = 1 << lg_i;
            // The challenges are stored in "creation order" as [u_k,...,u_1],
            // so u_{lg(i)+1} = is indexed by (lg_n-1) - lg_i
            let u_lg_i_sq = challenges_sq[(lg_n - 1) - lg_i];
            s.push(s[i - k] * u_lg_i_sq);
        }

        Ok((challenges_sq, challenges_inv_sq, s))
    }

    /// This method is for testing that proof generation work,
    /// but for efficiency the actual protocols would use `verification_scalars`
    /// method to combine inner product verification with other checks
    /// in a single multiscalar multiplication.
    #[allow(dead_code)]
    pub fn verify<IG, IH>(
        &self,
        n: usize,
        transcript: &mut Transcript,
        G_factors: IG,
        H_factors: IH,
        P: &RistrettoPoint,
        Q: &RistrettoPoint,
        G: &[RistrettoPoint],
        H: &[RistrettoPoint],
    ) -> Result<(), ProofError>
    where
        IG: IntoIterator,
        IG::Item: Borrow<Scalar>,
        IH: IntoIterator,
        IH::Item: Borrow<Scalar>,
    {
        let (u_sq, u_inv_sq, s) = self.verification_scalars(n, transcript)?;

        let g_times_a_times_s = G_factors
            .into_iter()
            .zip(s.iter())
            .map(|(g_i, s_i)| (self.a * s_i) * g_i.borrow())
            .take(G.len());

        // 1/s[i] is s[!i], and !i runs from n-1 to 0 as i runs from 0 to n-1
        let inv_s = s.iter().rev();

        let h_times_b_div_s = H_factors
            .into_iter()
            .zip(inv_s)
            .map(|(h_i, s_i_inv)| (self.b * s_i_inv) * h_i.borrow());

        let neg_u_sq = u_sq.iter().map(|ui| -ui);
        let neg_u_inv_sq = u_inv_sq.iter().map(|ui| -ui);

        let Ls = self
            .L_vec
            .iter()
            .map(|p| p.decompress().ok_or(ProofError::VerificationError))
            .collect::<Result<Vec<_>, _>>()?;

        let Rs = self
            .R_vec
            .iter()
            .map(|p| p.decompress().ok_or(ProofError::VerificationError))
            .collect::<Result<Vec<_>, _>>()?;

        let expect_P = RistrettoPoint::vartime_multiscalar_mul(
            iter::once(self.a * self.b)
                .chain(g_times_a_times_s)
                .chain(h_times_b_div_s)
                .chain(neg_u_sq)
                .chain(neg_u_inv_sq),
            iter::once(Q)
                .chain(G.iter())
                .chain(H.iter())
                .chain(Ls.iter())
                .chain(Rs.iter()),
        );

        if expect_P == *P {
            Ok(())
        } else {
            Err(ProofError::VerificationError)
        }
    }

    /// Returns the size in bytes required to serialize the inner
    /// product proof.
    ///
    /// For vectors of length `n` the proof size is
    /// \\(32 \cdot (2\lg n+2)\\) bytes.
    pub fn serialized_size(&self) -> usize {
        (self.L_vec.len() * 2 + 2) * 32
    }

    /// Serializes the proof into a byte array of \\(2n+2\\) 32-byte elements.
    /// The layout of the inner product proof is:
    /// * \\(n\\) pairs of compressed Ristretto points \\(L_0, R_0 \dots, L_{n-1}, R_{n-1}\\),
    /// * two scalars \\(a, b\\).
    pub fn to_bytes(&self) -> Vec<u8> {
        let mut buf = Vec::with_capacity(self.serialized_size());
        for (l, r) in self.L_vec.iter().zip(self.R_vec.iter()) {
            buf.extend_from_slice(l.as_bytes());
            buf.extend_from_slice(r.as_bytes());
        }
        buf.extend_from_slice(self.a.as_bytes());
        buf.extend_from_slice(self.b.as_bytes());
        buf
    }

    /// Deserializes the proof from a byte slice.
    /// Returns an error in the following cases:
    /// * the slice does not have \\(2n+2\\) 32-byte elements,
    /// * \\(n\\) is larger or equal to 32 (proof is too big),
    /// * any of \\(2n\\) points are not valid compressed Ristretto points,
    /// * any of 2 scalars are not canonical scalars modulo Ristretto group order.
    pub fn from_bytes(slice: &[u8]) -> Result<InnerProductProof, ProofError> {
        let b = slice.len();
        if b % 32 != 0 {
            return Err(ProofError::FormatError);
        }
        let num_elements = b / 32;
        if num_elements < 2 {
            return Err(ProofError::FormatError);
        }
        if (num_elements - 2) % 2 != 0 {
            return Err(ProofError::FormatError);
        }
        let lg_n = (num_elements - 2) / 2;
        if lg_n >= 32 {
            return Err(ProofError::FormatError);
        }

        use util::read32;

        let mut L_vec: Vec<CompressedRistretto> = Vec::with_capacity(lg_n);
        let mut R_vec: Vec<CompressedRistretto> = Vec::with_capacity(lg_n);
        for i in 0..lg_n {
            let pos = 2 * i * 32;
            L_vec.push(CompressedRistretto(read32(&slice[pos..])));
            R_vec.push(CompressedRistretto(read32(&slice[pos + 32..])));
        }

        let pos = 2 * lg_n * 32;
        let a =
            Scalar::from_canonical_bytes(read32(&slice[pos..])).ok_or(ProofError::FormatError)?;
        let b = Scalar::from_canonical_bytes(read32(&slice[pos + 32..]))
            .ok_or(ProofError::FormatError)?;

        Ok(InnerProductProof { L_vec, R_vec, a, b })
    }
}

/// Computes an inner product of two vectors
/// \\[
///    {\langle {\mathbf{a}}, {\mathbf{b}} \rangle} = \sum\_{i=0}^{n-1} a\_i \cdot b\_i.
/// \\]
/// Panics if the lengths of \\(\mathbf{a}\\) and \\(\mathbf{b}\\) are not equal.
pub fn inner_product(a: &[Scalar], b: &[Scalar]) -> Scalar {
    let mut out = Scalar::zero();
    if a.len() != b.len() {
        panic!("inner_product(a,b): lengths of vectors do not match");
    }
    for i in 0..a.len() {
        out += a[i] * b[i];
    }
    out
}

#[cfg(test)]
mod tests {
    use super::*;

    use sha3::Sha3_512;
    use util;

    fn test_helper_create(n: usize) {
        let mut rng = rand::thread_rng();

        use generators::BulletproofGens;
        let bp_gens = BulletproofGens::new(n, 1);
        let G: Vec<RistrettoPoint> = bp_gens.share(0).G(n).cloned().collect();
        let H: Vec<RistrettoPoint> = bp_gens.share(0).H(n).cloned().collect();

        // Q would be determined upstream in the protocol, so we pick a random one.
        let Q = RistrettoPoint::hash_from_bytes::<Sha3_512>(b"test point");

        // a and b are the vectors for which we want to prove c = <a,b>
        let a: Vec<_> = (0..n).map(|_| Scalar::random(&mut rng)).collect();
        let b: Vec<_> = (0..n).map(|_| Scalar::random(&mut rng)).collect();
        let c = inner_product(&a, &b);

        let G_factors: Vec<Scalar> = iter::repeat(Scalar::one()).take(n).collect();

        // y_inv is (the inverse of) a random challenge
        let y_inv = Scalar::random(&mut rng);
        let H_factors: Vec<Scalar> = util::exp_iter(y_inv).take(n).collect();

        // P would be determined upstream, but we need a correct P to check the proof.
        //
        // To generate P = <a,G> + <b,H'> + <a,b> Q, compute
        //             P = <a,G> + <b',H> + <a,b> Q,
        // where b' = b \circ y^(-n)
        let b_prime = b.iter().zip(util::exp_iter(y_inv)).map(|(bi, yi)| bi * yi);
        // a.iter() has Item=&Scalar, need Item=Scalar to chain with b_prime
        let a_prime = a.iter().cloned();

        let P = RistrettoPoint::vartime_multiscalar_mul(
            a_prime.chain(b_prime).chain(iter::once(c)),
            G.iter().chain(H.iter()).chain(iter::once(&Q)),
        );

        let mut verifier = Transcript::new(b"innerproducttest");
        let proof = InnerProductProof::create(
            &mut verifier,
            &Q,
            &G_factors,
            &H_factors,
            G.clone(),
            H.clone(),
            a.clone(),
            b.clone(),
        );

        let mut verifier = Transcript::new(b"innerproducttest");
        assert!(proof
            .verify(
                n,
                &mut verifier,
                iter::repeat(Scalar::one()).take(n),
                util::exp_iter(y_inv).take(n),
                &P,
                &Q,
                &G,
                &H
            )
            .is_ok());

        let proof = InnerProductProof::from_bytes(proof.to_bytes().as_slice()).unwrap();
        let mut verifier = Transcript::new(b"innerproducttest");
        assert!(proof
            .verify(
                n,
                &mut verifier,
                iter::repeat(Scalar::one()).take(n),
                util::exp_iter(y_inv).take(n),
                &P,
                &Q,
                &G,
                &H
            )
            .is_ok());
    }

    #[test]
    fn make_ipp_1() {
        test_helper_create(1);
    }

    #[test]
    fn make_ipp_2() {
        test_helper_create(2);
    }

    #[test]
    fn make_ipp_4() {
        test_helper_create(4);
    }

    #[test]
    fn make_ipp_32() {
        test_helper_create(32);
    }

    #[test]
    fn make_ipp_64() {
        test_helper_create(64);
    }

    #[test]
    fn test_inner_product() {
        let a = vec![
            Scalar::from(1u64),
            Scalar::from(2u64),
            Scalar::from(3u64),
            Scalar::from(4u64),
        ];
        let b = vec![
            Scalar::from(2u64),
            Scalar::from(3u64),
            Scalar::from(4u64),
            Scalar::from(5u64),
        ];
        assert_eq!(Scalar::from(40u64), inner_product(&a, &b));
    }
}