1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#![allow(non_snake_case)]
//! Definition of the proof struct.

use curve25519_dalek::ristretto::CompressedRistretto;
use curve25519_dalek::scalar::Scalar;
use curve25519_dalek::traits::{Identity, IsIdentity};

use errors::R1CSError;
use inner_product_proof::InnerProductProof;
use util;

use serde::de::Visitor;
use serde::{self, Deserialize, Deserializer, Serialize, Serializer};

const ONE_PHASE_COMMITMENTS: u8 = 0;
const TWO_PHASE_COMMITMENTS: u8 = 1;

/// A proof of some statement specified by a
/// [`ConstraintSystem`](::r1cs::ConstraintSystem).
///
/// Statements are specified by writing gadget functions which add
/// constraints to a [`ConstraintSystem`](::r1cs::ConstraintSystem)
/// implementation.  To construct an [`R1CSProof`], a prover constructs
/// a [`ProverCS`](::r1cs::ProverCS), then passes it to gadget
/// functions to build the constraint system, then consumes the
/// constraint system using
/// [`ProverCS::prove`](::r1cs::ProverCS::prove) to produce an
/// [`R1CSProof`].  To verify an [`R1CSProof`], a verifier constructs a
/// [`VerifierCS`](::r1cs::VerifierCS), then passes it to the same
/// gadget functions to (re)build the constraint system, then consumes
/// the constraint system using
/// [`VerifierCS::verify`](::r1cs::VerifierCS::verify) to verify the
/// proof.
#[derive(Clone, Debug)]
#[allow(non_snake_case)]
pub struct R1CSProof {
    /// Commitment to the values of input wires in the first phase.
    pub(super) A_I1: CompressedRistretto,
    /// Commitment to the values of output wires in the first phase.
    pub(super) A_O1: CompressedRistretto,
    /// Commitment to the blinding factors in the first phase.
    pub(super) S1: CompressedRistretto,
    /// Commitment to the values of input wires in the second phase.
    pub(super) A_I2: CompressedRistretto,
    /// Commitment to the values of output wires in the second phase.
    pub(super) A_O2: CompressedRistretto,
    /// Commitment to the blinding factors in the second phase.
    pub(super) S2: CompressedRistretto,
    /// Commitment to the \\(t_1\\) coefficient of \\( t(x) \\)
    pub(super) T_1: CompressedRistretto,
    /// Commitment to the \\(t_3\\) coefficient of \\( t(x) \\)
    pub(super) T_3: CompressedRistretto,
    /// Commitment to the \\(t_4\\) coefficient of \\( t(x) \\)
    pub(super) T_4: CompressedRistretto,
    /// Commitment to the \\(t_5\\) coefficient of \\( t(x) \\)
    pub(super) T_5: CompressedRistretto,
    /// Commitment to the \\(t_6\\) coefficient of \\( t(x) \\)
    pub(super) T_6: CompressedRistretto,
    /// Evaluation of the polynomial \\(t(x)\\) at the challenge point \\(x\\)
    pub(super) t_x: Scalar,
    /// Blinding factor for the synthetic commitment to \\( t(x) \\)
    pub(super) t_x_blinding: Scalar,
    /// Blinding factor for the synthetic commitment to the
    /// inner-product arguments
    pub(super) e_blinding: Scalar,
    /// Proof data for the inner-product argument.
    pub(super) ipp_proof: InnerProductProof,
}

impl R1CSProof {
    /// Serializes the proof into a byte array of 1 version byte + \\((13 or 16) + 2k\\) 32-byte elements,
    /// where \\(k=\lceil \log_2(n) \rceil\\) and \\(n\\) is the number of multiplication gates.
    ///
    /// # Layout
    ///
    /// The layout of the r1cs proof encoding is:
    /// * 1 version byte indicating whether the proof contains second-phase commitments or not,
    /// * 8 or 11 compressed Ristretto points \\(A_{I1},A_{O1},S_1,(A_{I2},A_{O2},S_2),T_1,...,T_6\\)
    ///   (\\(A_{I2},A_{O2},S_2\\) are skipped if there were no multipliers added in the randomized phase),
    /// * three scalars \\(t_x, \tilde{t}_x, \tilde{e}\\),
    /// * \\(k\\) pairs of compressed Ristretto points \\(L_0,R_0\dots,L_{k-1},R_{k-1}\\),
    /// * two scalars \\(a, b\\).
    pub fn to_bytes(&self) -> Vec<u8> {
        let mut buf = Vec::with_capacity(self.serialized_size());
        if self.missing_phase2_commitments() {
            buf.push(ONE_PHASE_COMMITMENTS);
            buf.extend_from_slice(self.A_I1.as_bytes());
            buf.extend_from_slice(self.A_O1.as_bytes());
            buf.extend_from_slice(self.S1.as_bytes());
        } else {
            buf.push(TWO_PHASE_COMMITMENTS);
            buf.extend_from_slice(self.A_I1.as_bytes());
            buf.extend_from_slice(self.A_O1.as_bytes());
            buf.extend_from_slice(self.S1.as_bytes());
            buf.extend_from_slice(self.A_I2.as_bytes());
            buf.extend_from_slice(self.A_O2.as_bytes());
            buf.extend_from_slice(self.S2.as_bytes());
        }
        buf.extend_from_slice(self.T_1.as_bytes());
        buf.extend_from_slice(self.T_3.as_bytes());
        buf.extend_from_slice(self.T_4.as_bytes());
        buf.extend_from_slice(self.T_5.as_bytes());
        buf.extend_from_slice(self.T_6.as_bytes());
        buf.extend_from_slice(self.t_x.as_bytes());
        buf.extend_from_slice(self.t_x_blinding.as_bytes());
        buf.extend_from_slice(self.e_blinding.as_bytes());
        // XXX this costs an extra alloc
        buf.extend_from_slice(self.ipp_proof.to_bytes().as_slice());
        buf
    }

    /// Returns the size in bytes required to serialize the `R1CSProof`.
    pub fn serialized_size(&self) -> usize {
        // version tag + (11 or 14) elements + the ipp
        let elements = if self.missing_phase2_commitments() {
            11
        } else {
            14
        };
        1 + elements * 32 + self.ipp_proof.serialized_size()
    }

    fn missing_phase2_commitments(&self) -> bool {
        self.A_I2.is_identity() && self.A_O2.is_identity() && self.S2.is_identity()
    }

    /// Deserializes the proof from a byte slice.
    ///
    /// Returns an error if the byte slice cannot be parsed into a `R1CSProof`.
    pub fn from_bytes(slice: &[u8]) -> Result<R1CSProof, R1CSError> {
        if slice.len() < 1 {
            return Err(R1CSError::FormatError);
        }
        let version = slice[0];
        let mut slice = &slice[1..];

        if slice.len() % 32 != 0 {
            return Err(R1CSError::FormatError);
        }

        let minlength = match version {
            ONE_PHASE_COMMITMENTS => 11 * 32,
            TWO_PHASE_COMMITMENTS => 14 * 32,
            _ => return Err(R1CSError::FormatError),
        };

        if slice.len() < minlength {
            return Err(R1CSError::FormatError);
        }

        // This macro takes care of counting bytes in the slice
        macro_rules! read32 {
            () => {{
                let tmp = util::read32(slice);
                slice = &slice[32..];
                tmp
            }};
        }

        let A_I1 = CompressedRistretto(read32!());
        let A_O1 = CompressedRistretto(read32!());
        let S1 = CompressedRistretto(read32!());
        let (A_I2, A_O2, S2) = if version == ONE_PHASE_COMMITMENTS {
            (
                CompressedRistretto::identity(),
                CompressedRistretto::identity(),
                CompressedRistretto::identity(),
            )
        } else {
            (
                CompressedRistretto(read32!()),
                CompressedRistretto(read32!()),
                CompressedRistretto(read32!()),
            )
        };
        let T_1 = CompressedRistretto(read32!());
        let T_3 = CompressedRistretto(read32!());
        let T_4 = CompressedRistretto(read32!());
        let T_5 = CompressedRistretto(read32!());
        let T_6 = CompressedRistretto(read32!());
        let t_x = Scalar::from_canonical_bytes(read32!()).ok_or(R1CSError::FormatError)?;
        let t_x_blinding = Scalar::from_canonical_bytes(read32!()).ok_or(R1CSError::FormatError)?;
        let e_blinding = Scalar::from_canonical_bytes(read32!()).ok_or(R1CSError::FormatError)?;

        // XXX: IPPProof from_bytes gives ProofError.
        let ipp_proof = InnerProductProof::from_bytes(slice).map_err(|_| R1CSError::FormatError)?;

        Ok(R1CSProof {
            A_I1,
            A_O1,
            S1,
            A_I2,
            A_O2,
            S2,
            T_1,
            T_3,
            T_4,
            T_5,
            T_6,
            t_x,
            t_x_blinding,
            e_blinding,
            ipp_proof,
        })
    }
}

impl Serialize for R1CSProof {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        serializer.serialize_bytes(&self.to_bytes()[..])
    }
}

impl<'de> Deserialize<'de> for R1CSProof {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        struct R1CSProofVisitor;

        impl<'de> Visitor<'de> for R1CSProofVisitor {
            type Value = R1CSProof;

            fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                formatter.write_str("a valid R1CSProof")
            }

            fn visit_bytes<E>(self, v: &[u8]) -> Result<R1CSProof, E>
            where
                E: serde::de::Error,
            {
                R1CSProof::from_bytes(v).map_err(serde::de::Error::custom)
            }
        }

        deserializer.deserialize_bytes(R1CSProofVisitor)
    }
}