1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
// -*- mode: rust; -*- // // This file is part of curve25519-dalek. // Copyright (c) 2016-2019 Isis Lovecruft, Henry de Valence // See LICENSE for licensing information. // // Authors: // - Isis Agora Lovecruft <isis@patternsinthevoid.net> // - Henry de Valence <hdevalence@hdevalence.ca> //! Internal curve representations which are not part of the public API. //! //! # Curve representations //! //! Internally, we use several different models for the curve. Here //! is a sketch of the relationship between the models, following [a //! post][smith-moderncrypto] //! by Ben Smith on the `moderncrypto` mailing list. This is also briefly //! discussed in section 2.5 of [_Montgomery curves and their //! arithmetic_][costello-smith-2017] by Costello and Smith. //! //! Begin with the affine equation for the curve, //! $$ //! -x\^2 + y\^2 = 1 + dx\^2y\^2. //! $$ //! Next, pass to the projective closure \\(\mathbb P\^1 \times \mathbb //! P\^1 \\) by setting \\(x=X/Z\\), \\(y=Y/T.\\) Clearing denominators //! gives the model //! $$ //! -X\^2T\^2 + Y\^2Z\^2 = Z\^2T\^2 + dX\^2Y\^2. //! $$ //! In `curve25519-dalek`, this is represented as the `CompletedPoint` //! struct. //! To map from \\(\mathbb P\^1 \times \mathbb P\^1 \\), a product of //! two lines, to \\(\mathbb P\^3\\), we use the [Segre //! embedding](https://en.wikipedia.org/wiki/Segre_embedding) //! $$ //! \sigma : ((X:Z),(Y:T)) \mapsto (XY:XT:ZY:ZT). //! $$ //! Using coordinates \\( (W_0:W_1:W_2:W_3) \\) for \\(\mathbb P\^3\\), //! the image \\(\sigma (\mathbb P\^1 \times \mathbb P\^1) \\) is the //! surface defined by \\( W_0 W_3 = W_1 W_2 \\), and under \\( //! \sigma\\), the equation above becomes //! $$ //! -W\_1\^2 + W\_2\^2 = W\_3\^2 + dW\_0\^2, //! $$ //! so that the curve is given by the pair of equations //! $$ //! \begin{aligned} //! -W\_1\^2 + W\_2\^2 &= W\_3\^2 + dW\_0\^2, \\\\ W_0 W_3 &= W_1 W_2. //! \end{aligned} //! $$ //! Up to variable naming, this is exactly the "extended" curve model //! introduced in [_Twisted Edwards Curves //! Revisited_][hisil-wong-carter-dawson-2008] by Hisil, Wong, Carter, //! and Dawson. In `curve25519-dalek`, it is represented as the //! `EdwardsPoint` struct. We can map from \\(\mathbb P\^3 \\) to //! \\(\mathbb P\^2 \\) by sending \\( (W\_0:W\_1:W\_2:W\_3) \\) to \\( //! (W\_1:W\_2:W\_3) \\). Notice that //! $$ //! \frac {W\_1} {W\_3} = \frac {XT} {ZT} = \frac X Z = x, //! $$ //! and //! $$ //! \frac {W\_2} {W\_3} = \frac {YZ} {ZT} = \frac Y T = y, //! $$ //! so this is the same as if we had started with the affine model //! and passed to \\( \mathbb P\^2 \\) by setting \\( x = W\_1 / W\_3 //! \\), \\(y = W\_2 / W\_3 \\). //! Up to variable naming, this is the projective representation //! introduced in in [_Twisted Edwards //! Curves_][bernstein-birkner-joye-lange-peters-2008] by Bernstein, //! Birkner, Joye, Lange, and Peters. In `curve25519-dalek`, it is //! represented by the `ProjectivePoint` struct. //! //! # Passing between curve models //! //! Although the \\( \mathbb P\^3 \\) model provides faster addition //! formulas, the \\( \mathbb P\^2 \\) model provides faster doubling //! formulas. Hisil, Wong, Carter, and Dawson therefore suggest mixing //! coordinate systems for scalar multiplication, attributing the idea //! to [a 1998 paper][cohen-miyaji-ono-1998] of Cohen, Miyagi, and Ono. //! //! Their suggestion is to vary the formulas used by context, using a //! \\( \mathbb P\^2 \rightarrow \mathbb P\^2 \\) doubling formula when //! a doubling is followed //! by another doubling, a \\( \mathbb P\^2 \rightarrow \mathbb P\^3 \\) //! doubling formula when a doubling is followed by an addition, and //! computing point additions using a \\( \mathbb P\^3 \times \mathbb P\^3 //! \rightarrow \mathbb P\^2 \\) formula. //! //! The `ref10` reference implementation of [Ed25519][ed25519], by //! Bernstein, Duif, Lange, Schwabe, and Yang, tweaks //! this strategy, factoring the addition formulas through the //! completion \\( \mathbb P\^1 \times \mathbb P\^1 \\), so that the //! output of an addition or doubling always lies in \\( \mathbb P\^1 \times //! \mathbb P\^1\\), and the choice of which formula to use is replaced //! by a choice of whether to convert the result to \\( \mathbb P\^2 \\) //! or \\(\mathbb P\^3 \\). However, this tweak is not described in //! their paper, only in their software. //! //! Our naming for the `CompletedPoint` (\\(\mathbb P\^1 \times \mathbb //! P\^1 \\)), `ProjectivePoint` (\\(\mathbb P\^2 \\)), and //! `EdwardsPoint` (\\(\mathbb P\^3 \\)) structs follows the naming in //! Adam Langley's [Golang ed25519][agl-ed25519] implementation, which //! `curve25519-dalek` was originally derived from. //! //! Finally, to accelerate readditions, we use two cached point formats //! in "Niels coordinates", named for Niels Duif, //! one for the affine model and one for the \\( \mathbb P\^3 \\) model: //! //! * `AffineNielsPoint`: \\( (y+x, y-x, 2dxy) \\) //! * `ProjectiveNielsPoint`: \\( (Y+X, Y-X, Z, 2dXY) \\) //! //! [smith-moderncrypto]: https://moderncrypto.org/mail-archive/curves/2016/000807.html //! [costello-smith-2017]: https://eprint.iacr.org/2017/212 //! [hisil-wong-carter-dawson-2008]: https://www.iacr.org/archive/asiacrypt2008/53500329/53500329.pdf //! [bernstein-birkner-joye-lange-peters-2008]: https://eprint.iacr.org/2008/013 //! [cohen-miyaji-ono-1998]: https://link.springer.com/content/pdf/10.1007%2F3-540-49649-1_6.pdf //! [ed25519]: https://eprint.iacr.org/2011/368 //! [agl-ed25519]: https://github.com/agl/ed25519 #![allow(non_snake_case)] use core::fmt::Debug; use core::ops::{Add, Neg, Sub}; use subtle::Choice; use subtle::ConditionallySelectable; use zeroize::Zeroize; use constants; use edwards::EdwardsPoint; use field::FieldElement; use traits::ValidityCheck; // ------------------------------------------------------------------------ // Internal point representations // ------------------------------------------------------------------------ /// A `ProjectivePoint` is a point \\((X:Y:Z)\\) on the \\(\mathbb /// P\^2\\) model of the curve. /// A point \\((x,y)\\) in the affine model corresponds to /// \\((x:y:1)\\). /// /// More details on the relationships between the different curve models /// can be found in the module-level documentation. #[derive(Copy, Clone)] pub struct ProjectivePoint { pub X: FieldElement, pub Y: FieldElement, pub Z: FieldElement, } /// A `CompletedPoint` is a point \\(((X:Z), (Y:T))\\) on the \\(\mathbb /// P\^1 \times \mathbb P\^1 \\) model of the curve. /// A point (x,y) in the affine model corresponds to \\( ((x:1),(y:1)) /// \\). /// /// More details on the relationships between the different curve models /// can be found in the module-level documentation. #[derive(Copy, Clone)] #[allow(missing_docs)] pub struct CompletedPoint { pub X: FieldElement, pub Y: FieldElement, pub Z: FieldElement, pub T: FieldElement, } /// A pre-computed point in the affine model for the curve, represented as /// \\((y+x, y-x, 2dxy)\\) in "Niels coordinates". /// /// More details on the relationships between the different curve models /// can be found in the module-level documentation. // Safe to derive Eq because affine coordinates. #[derive(Copy, Clone, Eq, PartialEq)] #[allow(missing_docs)] pub struct AffineNielsPoint { pub y_plus_x: FieldElement, pub y_minus_x: FieldElement, pub xy2d: FieldElement, } impl Zeroize for AffineNielsPoint { fn zeroize(&mut self) { self.y_plus_x.zeroize(); self.y_minus_x.zeroize(); self.xy2d.zeroize(); } } /// A pre-computed point on the \\( \mathbb P\^3 \\) model for the /// curve, represented as \\((Y+X, Y-X, Z, 2dXY)\\) in "Niels coordinates". /// /// More details on the relationships between the different curve models /// can be found in the module-level documentation. #[derive(Copy, Clone)] pub struct ProjectiveNielsPoint { pub Y_plus_X: FieldElement, pub Y_minus_X: FieldElement, pub Z: FieldElement, pub T2d: FieldElement, } impl Zeroize for ProjectiveNielsPoint { fn zeroize(&mut self) { self.Y_plus_X.zeroize(); self.Y_minus_X.zeroize(); self.Z.zeroize(); self.T2d.zeroize(); } } // ------------------------------------------------------------------------ // Constructors // ------------------------------------------------------------------------ use traits::Identity; impl Identity for ProjectivePoint { fn identity() -> ProjectivePoint { ProjectivePoint { X: FieldElement::zero(), Y: FieldElement::one(), Z: FieldElement::one(), } } } impl Identity for ProjectiveNielsPoint { fn identity() -> ProjectiveNielsPoint { ProjectiveNielsPoint{ Y_plus_X: FieldElement::one(), Y_minus_X: FieldElement::one(), Z: FieldElement::one(), T2d: FieldElement::zero(), } } } impl Default for ProjectiveNielsPoint { fn default() -> ProjectiveNielsPoint { ProjectiveNielsPoint::identity() } } impl Identity for AffineNielsPoint { fn identity() -> AffineNielsPoint { AffineNielsPoint{ y_plus_x: FieldElement::one(), y_minus_x: FieldElement::one(), xy2d: FieldElement::zero(), } } } impl Default for AffineNielsPoint { fn default() -> AffineNielsPoint { AffineNielsPoint::identity() } } // ------------------------------------------------------------------------ // Validity checks (for debugging, not CT) // ------------------------------------------------------------------------ impl ValidityCheck for ProjectivePoint { fn is_valid(&self) -> bool { // Curve equation is -x^2 + y^2 = 1 + d*x^2*y^2, // homogenized as (-X^2 + Y^2)*Z^2 = Z^4 + d*X^2*Y^2 let XX = self.X.square(); let YY = self.Y.square(); let ZZ = self.Z.square(); let ZZZZ = ZZ.square(); let lhs = &(&YY - &XX) * &ZZ; let rhs = &ZZZZ + &(&constants::EDWARDS_D * &(&XX * &YY)); lhs == rhs } } // ------------------------------------------------------------------------ // Constant-time assignment // ------------------------------------------------------------------------ impl ConditionallySelectable for ProjectiveNielsPoint { fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self { ProjectiveNielsPoint { Y_plus_X: FieldElement::conditional_select(&a.Y_plus_X, &b.Y_plus_X, choice), Y_minus_X: FieldElement::conditional_select(&a.Y_minus_X, &b.Y_minus_X, choice), Z: FieldElement::conditional_select(&a.Z, &b.Z, choice), T2d: FieldElement::conditional_select(&a.T2d, &b.T2d, choice), } } fn conditional_assign(&mut self, other: &Self, choice: Choice) { self.Y_plus_X.conditional_assign(&other.Y_plus_X, choice); self.Y_minus_X.conditional_assign(&other.Y_minus_X, choice); self.Z.conditional_assign(&other.Z, choice); self.T2d.conditional_assign(&other.T2d, choice); } } impl ConditionallySelectable for AffineNielsPoint { fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self { AffineNielsPoint { y_plus_x: FieldElement::conditional_select(&a.y_plus_x, &b.y_plus_x, choice), y_minus_x: FieldElement::conditional_select(&a.y_minus_x, &b.y_minus_x, choice), xy2d: FieldElement::conditional_select(&a.xy2d, &b.xy2d, choice), } } fn conditional_assign(&mut self, other: &Self, choice: Choice) { self.y_plus_x.conditional_assign(&other.y_plus_x, choice); self.y_minus_x.conditional_assign(&other.y_minus_x, choice); self.xy2d.conditional_assign(&other.xy2d, choice); } } // ------------------------------------------------------------------------ // Point conversions // ------------------------------------------------------------------------ impl ProjectivePoint { /// Convert this point from the \\( \mathbb P\^2 \\) model to the /// \\( \mathbb P\^3 \\) model. /// /// This costs \\(3 \mathrm M + 1 \mathrm S\\). pub fn to_extended(&self) -> EdwardsPoint { EdwardsPoint { X: &self.X * &self.Z, Y: &self.Y * &self.Z, Z: self.Z.square(), T: &self.X * &self.Y, } } } impl CompletedPoint { /// Convert this point from the \\( \mathbb P\^1 \times \mathbb P\^1 /// \\) model to the \\( \mathbb P\^2 \\) model. /// /// This costs \\(3 \mathrm M \\). pub fn to_projective(&self) -> ProjectivePoint { ProjectivePoint { X: &self.X * &self.T, Y: &self.Y * &self.Z, Z: &self.Z * &self.T, } } /// Convert this point from the \\( \mathbb P\^1 \times \mathbb P\^1 /// \\) model to the \\( \mathbb P\^3 \\) model. /// /// This costs \\(4 \mathrm M \\). pub fn to_extended(&self) -> EdwardsPoint { EdwardsPoint { X: &self.X * &self.T, Y: &self.Y * &self.Z, Z: &self.Z * &self.T, T: &self.X * &self.Y, } } } // ------------------------------------------------------------------------ // Doubling // ------------------------------------------------------------------------ impl ProjectivePoint { /// Double this point: return self + self pub fn double(&self) -> CompletedPoint { // Double() let XX = self.X.square(); let YY = self.Y.square(); let ZZ2 = self.Z.square2(); let X_plus_Y = &self.X + &self.Y; let X_plus_Y_sq = X_plus_Y.square(); let YY_plus_XX = &YY + &XX; let YY_minus_XX = &YY - &XX; CompletedPoint{ X: &X_plus_Y_sq - &YY_plus_XX, Y: YY_plus_XX, Z: YY_minus_XX, T: &ZZ2 - &YY_minus_XX } } } // ------------------------------------------------------------------------ // Addition and Subtraction // ------------------------------------------------------------------------ // XXX(hdevalence) These were doc(hidden) so they don't appear in the // public API docs. // However, that prevents them being used with --document-private-items, // so comment out the doc(hidden) for now until this is resolved // // upstream rust issue: https://github.com/rust-lang/rust/issues/46380 //#[doc(hidden)] impl<'a, 'b> Add<&'b ProjectiveNielsPoint> for &'a EdwardsPoint { type Output = CompletedPoint; fn add(self, other: &'b ProjectiveNielsPoint) -> CompletedPoint { let Y_plus_X = &self.Y + &self.X; let Y_minus_X = &self.Y - &self.X; let PP = &Y_plus_X * &other.Y_plus_X; let MM = &Y_minus_X * &other.Y_minus_X; let TT2d = &self.T * &other.T2d; let ZZ = &self.Z * &other.Z; let ZZ2 = &ZZ + &ZZ; CompletedPoint{ X: &PP - &MM, Y: &PP + &MM, Z: &ZZ2 + &TT2d, T: &ZZ2 - &TT2d } } } //#[doc(hidden)] impl<'a, 'b> Sub<&'b ProjectiveNielsPoint> for &'a EdwardsPoint { type Output = CompletedPoint; fn sub(self, other: &'b ProjectiveNielsPoint) -> CompletedPoint { let Y_plus_X = &self.Y + &self.X; let Y_minus_X = &self.Y - &self.X; let PM = &Y_plus_X * &other.Y_minus_X; let MP = &Y_minus_X * &other.Y_plus_X; let TT2d = &self.T * &other.T2d; let ZZ = &self.Z * &other.Z; let ZZ2 = &ZZ + &ZZ; CompletedPoint{ X: &PM - &MP, Y: &PM + &MP, Z: &ZZ2 - &TT2d, T: &ZZ2 + &TT2d } } } //#[doc(hidden)] impl<'a, 'b> Add<&'b AffineNielsPoint> for &'a EdwardsPoint { type Output = CompletedPoint; fn add(self, other: &'b AffineNielsPoint) -> CompletedPoint { let Y_plus_X = &self.Y + &self.X; let Y_minus_X = &self.Y - &self.X; let PP = &Y_plus_X * &other.y_plus_x; let MM = &Y_minus_X * &other.y_minus_x; let Txy2d = &self.T * &other.xy2d; let Z2 = &self.Z + &self.Z; CompletedPoint{ X: &PP - &MM, Y: &PP + &MM, Z: &Z2 + &Txy2d, T: &Z2 - &Txy2d } } } //#[doc(hidden)] impl<'a, 'b> Sub<&'b AffineNielsPoint> for &'a EdwardsPoint { type Output = CompletedPoint; fn sub(self, other: &'b AffineNielsPoint) -> CompletedPoint { let Y_plus_X = &self.Y + &self.X; let Y_minus_X = &self.Y - &self.X; let PM = &Y_plus_X * &other.y_minus_x; let MP = &Y_minus_X * &other.y_plus_x; let Txy2d = &self.T * &other.xy2d; let Z2 = &self.Z + &self.Z; CompletedPoint{ X: &PM - &MP, Y: &PM + &MP, Z: &Z2 - &Txy2d, T: &Z2 + &Txy2d } } } // ------------------------------------------------------------------------ // Negation // ------------------------------------------------------------------------ impl<'a> Neg for &'a ProjectiveNielsPoint { type Output = ProjectiveNielsPoint; fn neg(self) -> ProjectiveNielsPoint { ProjectiveNielsPoint{ Y_plus_X: self.Y_minus_X, Y_minus_X: self.Y_plus_X, Z: self.Z, T2d: -(&self.T2d), } } } impl<'a> Neg for &'a AffineNielsPoint { type Output = AffineNielsPoint; fn neg(self) -> AffineNielsPoint { AffineNielsPoint{ y_plus_x: self.y_minus_x, y_minus_x: self.y_plus_x, xy2d: -(&self.xy2d) } } } // ------------------------------------------------------------------------ // Debug traits // ------------------------------------------------------------------------ impl Debug for ProjectivePoint { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "ProjectivePoint{{\n\tX: {:?},\n\tY: {:?},\n\tZ: {:?}\n}}", &self.X, &self.Y, &self.Z) } } impl Debug for CompletedPoint { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "CompletedPoint{{\n\tX: {:?},\n\tY: {:?},\n\tZ: {:?},\n\tT: {:?}\n}}", &self.X, &self.Y, &self.Z, &self.T) } } impl Debug for AffineNielsPoint { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "AffineNielsPoint{{\n\ty_plus_x: {:?},\n\ty_minus_x: {:?},\n\txy2d: {:?}\n}}", &self.y_plus_x, &self.y_minus_x, &self.xy2d) } } impl Debug for ProjectiveNielsPoint { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "ProjectiveNielsPoint{{\n\tY_plus_X: {:?},\n\tY_minus_X: {:?},\n\tZ: {:?},\n\tT2d: {:?}\n}}", &self.Y_plus_X, &self.Y_minus_X, &self.Z, &self.T2d) } }