1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
use rand::{thread_rng, Rng};

use curve25519_dalek::ristretto::{CompressedRistretto, RistrettoPoint};
use curve25519_dalek::scalar::Scalar;
use curve25519_dalek::traits::{IsIdentity, VartimeMultiscalarMul};

use crate::toolbox::{SchnorrCS, TranscriptProtocol};
use crate::util::Matrix;
use crate::{BatchableProof, ProofError, Transcript};

/// Used to produce batch verification results.
///
/// To use a [`BatchVerifier`], first construct one using [`BatchVerifier::new()`],
/// declaring a batch size,
/// supplying a domain separation label for the proof statement, as well as a
/// transcript for each proof to verify.
///
/// Allocate secret variables using [`BatchVerifier::allocate_scalar`].
///
/// To allocate points which have the same assignment for all proofs
/// in the batch, use [`BatchVerifier::allocate_static_point`].  This
/// allows the implementation to overlap coefficients among all proofs
/// in the combined verification check.
///
/// To allocate points which have different asssignments for each
/// proof instance, use [`BatchVerifier::allocate_instance_point`].
///
/// Finally, use [`BatchVerifier::verify_batchable`] to consume the
/// verifier and produce a batch verification result.
pub struct BatchVerifier<'a> {
    batch_size: usize,
    transcripts: Vec<&'a mut Transcript>,

    num_scalars: usize,

    static_points: Vec<CompressedRistretto>,
    static_point_labels: Vec<&'static [u8]>,

    instance_points: Vec<Vec<CompressedRistretto>>,
    instance_point_labels: Vec<&'static [u8]>,

    constraints: Vec<(PointVar, Vec<(ScalarVar, PointVar)>)>,
}

/// A scalar variable used in batch verification.
#[derive(Copy, Clone)]
pub struct ScalarVar(usize);

/// A point variable used in batch verification.
#[derive(Copy, Clone)]
pub enum PointVar {
    /// A variable whose assignment is common to all proofs in the batch.
    Static(usize),
    /// A variable whose assignment is unique for each proof instance.
    Instance(usize),
}

impl<'a> BatchVerifier<'a> {
    /// Construct a new batch verifier for the statement with the
    /// given `proof_label`.
    ///
    /// The `batch_size` is required as an up-front parameter to help
    /// prevent errors with size mismatches.
    ///
    /// Note that this function requires one transcript borrow per
    /// proof.
    pub fn new(
        proof_label: &'static [u8],
        batch_size: usize,
        mut transcripts: Vec<&'a mut Transcript>,
    ) -> Result<Self, ProofError> {
        if transcripts.len() != batch_size {
            return Err(ProofError::BatchSizeMismatch);
        }
        for i in 0..transcripts.len() {
            transcripts[i].domain_sep(proof_label);
        }
        Ok(BatchVerifier {
            batch_size,
            transcripts,
            num_scalars: 0,
            static_points: Vec::default(),
            static_point_labels: Vec::default(),
            instance_points: Vec::default(),
            instance_point_labels: Vec::default(),
            constraints: Vec::default(),
        })
    }

    /// Allocate a placeholder scalar variable with the given `label`.
    pub fn allocate_scalar(&mut self, label: &'static [u8]) -> ScalarVar {
        for transcript in self.transcripts.iter_mut() {
            transcript.append_scalar_var(label);
        }
        self.num_scalars += 1;
        ScalarVar(self.num_scalars - 1)
    }

    /// Allocate a point variable whose assignment is common to all proofs in the batch.
    pub fn allocate_static_point(
        &mut self,
        label: &'static [u8],
        assignment: CompressedRistretto,
    ) -> Result<PointVar, ProofError> {
        for transcript in self.transcripts.iter_mut() {
            transcript.validate_and_append_point_var(label, &assignment)?;
        }
        self.static_points.push(assignment);
        self.static_point_labels.push(label);

        Ok(PointVar::Static(self.static_points.len() - 1))
    }

    /// Allocate a point variable with a different assignment for each proof instance.
    pub fn allocate_instance_point(
        &mut self,
        label: &'static [u8],
        assignments: Vec<CompressedRistretto>,
    ) -> Result<PointVar, ProofError> {
        if assignments.len() != self.batch_size {
            return Err(ProofError::BatchSizeMismatch);
        }
        // nll
        {
            let it = Iterator::zip(self.transcripts.iter_mut(), assignments.iter());
            for (transcript, assignment) in it {
                transcript.validate_and_append_point_var(label, &assignment)?;
            }
        }
        self.instance_points.push(assignments);
        self.instance_point_labels.push(label);

        Ok(PointVar::Instance(self.instance_points.len() - 1))
    }

    /// Consume the verifier to produce a verification result.
    pub fn verify_batchable(mut self, proofs: &[BatchableProof]) -> Result<(), ProofError> {
        if proofs.len() != self.batch_size {
            return Err(ProofError::BatchSizeMismatch);
        }

        for proof in proofs {
            if proof.commitments.len() != self.constraints.len() {
                return Err(ProofError::VerificationFailure);
            }
            if proof.responses.len() != self.num_scalars {
                return Err(ProofError::VerificationFailure);
            }
        }

        // Feed each prover's commitments into their respective transcript
        for j in 0..self.batch_size {
            for (i, com) in proofs[j].commitments.iter().enumerate() {
                let label = match self.constraints[i].0 {
                    PointVar::Static(var_idx) => self.static_point_labels[var_idx],
                    PointVar::Instance(var_idx) => self.instance_point_labels[var_idx],
                };
                self.transcripts[j].validate_and_append_blinding_commitment(label, &com)?;
            }
        }

        // Compute the challenge value for each proof
        let minus_c = self
            .transcripts
            .iter_mut()
            .map(|trans| -trans.get_challenge(b"chal"))
            .collect::<Vec<_>>();

        let num_s = self.static_points.len();
        let num_i = self.instance_points.len();
        let num_c = self.constraints.len();

        let mut static_coeffs = vec![Scalar::zero(); num_s];
        let mut instance_coeffs = Matrix::<Scalar>::new(num_i + num_c, self.batch_size);

        for i in 0..num_c {
            let (ref lhs_var, ref rhs_lc) = self.constraints[i];
            for j in 0..self.batch_size {
                let random_factor = Scalar::from(thread_rng().gen::<u128>());

                // rand*( sum(P_i, resp_i) - c * Q - Q_com) == 0

                instance_coeffs[(num_i + i, j)] -= random_factor;

                match lhs_var {
                    PointVar::Static(var_idx) => {
                        static_coeffs[*var_idx] += random_factor * minus_c[j];
                    }
                    PointVar::Instance(var_idx) => {
                        instance_coeffs[(*var_idx, j)] += random_factor * minus_c[j];
                    }
                }

                for (sc_var, pt_var) in rhs_lc {
                    let resp = proofs[j].responses[sc_var.0];
                    match pt_var {
                        PointVar::Static(var_idx) => {
                            static_coeffs[*var_idx] += random_factor * resp;
                        }
                        PointVar::Instance(var_idx) => {
                            instance_coeffs[(*var_idx, j)] += random_factor * resp;
                        }
                    }
                }
            }
        }

        let mut instance_points = self.instance_points.clone();
        for i in 0..num_c {
            let ith_commitments = proofs.iter().map(|proof| proof.commitments[i]);
            instance_points.push(ith_commitments.collect());
        }

        let flat_instance_points = instance_points
            .iter()
            .flat_map(|inner| inner.iter().cloned())
            .collect::<Vec<CompressedRistretto>>();

        let check = RistrettoPoint::optional_multiscalar_mul(
            static_coeffs
                .iter()
                .chain(instance_coeffs.row_major_entries()),
            self.static_points
                .iter()
                .chain(flat_instance_points.iter())
                .map(|pt| pt.decompress()),
        )
        .ok_or(ProofError::VerificationFailure)?;

        if check.is_identity() {
            Ok(())
        } else {
            Err(ProofError::VerificationFailure)
        }
    }
}

impl<'a> SchnorrCS for BatchVerifier<'a> {
    type ScalarVar = ScalarVar;
    type PointVar = PointVar;

    fn constrain(&mut self, lhs: PointVar, linear_combination: Vec<(ScalarVar, PointVar)>) {
        self.constraints.push((lhs, linear_combination));
    }
}